Greenhouse gas emissions intensity of global croplands (2024)

References

  1. Foley, J. A. et al. Solutions for a cultivated plane. Nature 478, 337–342 (2011).

    Article CAS Google Scholar

  2. Lipper, L. et al. Climate-smart agriculture for food security. Nat. Clim. Change 4, 1068–1072 (2014).

    Article Google Scholar

  3. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article CAS Google Scholar

  4. Grassini, P. & Cassman, K. G. High-yield maize with large net energy yield andsmall global warming intensity. Proc. Natl Acad. Sci. USA 109, 1074–1079 (2012).

    Article CAS Google Scholar

  5. Van Groenigen, J. W., Velthof, G. L., Oenema, O., Van Groenigen, K. J. & Van Kessel, C. Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903–913 (2010).

    Article CAS Google Scholar

  6. Linquist, B, van Groenigen, K. J., Adviento-Borbe, M. A., Pittelkow, C. & van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Change Biol. 18, 194–209 (2012).

    Article Google Scholar

  7. West, P. C. et al. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    Article CAS Google Scholar

  8. Vermeulen, S. J., Campbell, B. M. & Ingram, J. S. I. Climate change and food systems. Ann. Rev. Environ. Resour. 37, 195–222 (2012).

    Article Google Scholar

  9. Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).

    Article CAS Google Scholar

  10. Godfray, H. C. J., Pretty, J., Thomas, S. M., Warham, E. J. & Beddington, J. R. Linking policy on climate and food. Science 331, 1013–1014 (2011).

    Article CAS Google Scholar

  11. FAOSTAT Online Statistical Service (Food and Agriculture Organization (FAO), 2016); http://faostat3.fao.org

  12. Tubiello, F. N. et al. The contribution of agriculture, forestry and other landuseactivities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).

    Article Google Scholar

  13. Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).

    Article CAS Google Scholar

  14. Feng, J. F. et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agr. Ecosyst. Environ. 164, 220–228 (2013).

    Article Google Scholar

  15. Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).

    Article CAS Google Scholar

  16. Gerber, J. S. et al. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Glob. Change Biol. 22, 3383–3394 (2016).

    Article Google Scholar

  17. Yan, X. Y., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles 23, GB2002 (2009).

    Article Google Scholar

  18. IPCC: Summary for policymakers. In Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  19. Mohanty, S. Trends in global rice consumption. Rice Today 12, 44–45 (2013).

    Google Scholar

  20. IPCC 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme (eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) (Institute for Global Environmental Strategies, 2006).

  21. Frolking, S. et al. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19, 371–396 (2011).

    Article CAS Google Scholar

  22. Davis, S. J., Burney, J. A., Pongratz, J. & Caldeira, K. Methods for attributing land-use emissions to products. Carbon Manage. 5, 233–245 (2014).

    Article CAS Google Scholar

  23. DeFries, R. et al. Global nutrition. Metrics for land-scarce agriculture. Science 349, 238–240 (2015).

    Article CAS Google Scholar

  24. Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    Article Google Scholar

  25. Khoury, C. K. et al. Increasing hom*ogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).

    Article CAS Google Scholar

  26. West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    Article CAS Google Scholar

  27. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article CAS Google Scholar

  28. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article CAS Google Scholar

  29. Pittelkow, C. M. et al. Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agr. Ecosyst. Environ. 177, 10–20 (2013).

    Article CAS Google Scholar

  30. Merrigan, K. et al. Designing a sustainable diet. Science 350, 165–166 (2015).

    Article CAS Google Scholar

  31. Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographicdistribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    Article Google Scholar

  32. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

    Article Google Scholar

  33. IPCC 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi, T. et al.) (IPCC, 2014).

  34. Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article CAS Google Scholar

  35. Robinson, T. et al. Global Livestock Production Systems (FAO, International Livestock Research Institute (ILRI), 2011).

    Google Scholar

  36. Xu, S. P., Jaffe, P. R. & Mauzerall, D. L. A process-based model for methaneemission from flooded rice paddy systems. Ecol. Model. 205, 475–491 (2007).

    Article CAS Google Scholar

  37. Portmann, F. T. Global Estimation of Monthly Irrigated and Rainfed Crop Areas on a 5 Arc-minute Grid PhD thesis, Univ. Frankfurt (2011)

  38. AQUASTAT (FAO, 2015); www.fao.org/nr/water/aquastat/main/index.stm

  39. Li, C. S. et al. Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980–2000. Geophys. Res. Lett. 29, 1972 (2002)

    Google Scholar

  40. Asia Least-cost Greenhouse Gas Abatement Strategy (ALGAS) (Asian Development Bank, Global Environment Facility and United Nations Development Program, 1998)

  41. Adhya, T. K., Linquist, B., Searchinger, T., Wassmann, R. & Yan, X. Wetting and Drying: Reducing Greenhouse Gas Emissions and Saving Water from Rice Production (World Resources Institute, 2014)

    Google Scholar

  42. Yan, X. Y., Yagi, K., Akiyama, H. & Akimoto, H. Statistical analysis of the major variables controlling methane emission from rice fields. Glob. Change Biol. 11, 1131–1141 (2005)

    Article Google Scholar

  43. Huke, R. E. & Huke, E. H. Rice Area by Type of Culture: South, Southeast, and East Asia, A Revised and Updated Data Base (International Rice Research Institute, 1997)

    Google Scholar

  44. Vandergon, H. A. C. D. & Neue, H. U. Influence of organic-matter incorporation on the methane emission from a wetland rice field. Glob. Biogeochem. Cycles 9, 11–22 (1995)

    Article Google Scholar

  45. Bijay-Singh, Shan, Y. H., Johnson-Beebout, S. E., Yadvinder-Singh & Buresh, R. J. Chapter 3 crop residue management for lowland rice-based cropping systems in Asia. Adv. Agron. 98, 117–199 (2008)

    Article Google Scholar

  46. Gupta, P. K. et al. Residue burning in rice-wheat cropping system: causes and implications. Curr. Sci. 87, 1713–1717 (2004)

    CAS Google Scholar

  47. Ahmed, T., Ahmad, B. & Ahmad, W. Why do farmers burn rice residue? Examining farmers’ choices in Punjab, Pakistan. Land Use Policy 47, 448–458 (2015)

    Article Google Scholar

  48. Yevich, R. & Logan, J. A. An assessment of biofuel use and burning of agricultural waste in the developing world. Glob. Biogeochem. Cycles 17, 1095 (2003)

    Article Google Scholar

  49. Yan, X. Y., Ohara, T. & Akimoto, H. Bottom-up estimate of biomass burning in mainland China. Atmos. Environ. 40, 5262–5273 (2006)

    Article CAS Google Scholar

  50. Harmonized World Soil Database V 1.2 (FAO, IIASA, SRIC, ISSCAS and JRC, 2012); http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML

  51. Joosten, H. The Global Peatland CO2 Picture: Peatland Status and Drainage Related Emissions in all Countries of the World 35 (Wetlands International, 2009)

    Google Scholar

  52. Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011)

    Article Google Scholar

  53. Lappalainen, E. Global Peat Resources 359 (International Peat Society, 1996)

    Google Scholar

  54. Joosten, H. Wise Use of Mires and Peatlands 304 (International Mire Conservation Group and International Peat Society, 2002)

    Google Scholar

  55. Jauhiainen, J. & Silvennoinen, H. Diffusion GHG fluxes at tropical peatland drainage canal water surfaces. Suo 63, 93–105 (2012)

    Google Scholar

  56. Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Phil. Trans. R. Soc. 368, 20130122 (2013)

    Article Google Scholar

  57. Stehfest, E. & Bouwman, L. N2O and NO emission from agricultural fields andsoils under natural vegetation: summarizing available measurement data andmodeling of global annual emissions. Nutr. Cycl. Agroecosyst. 74, 207–228 (2006)

    Article CAS Google Scholar

  58. Mosier, A. et al. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr. Cycl. Agroecosyst. 52, 225–248 (1998)

    Article CAS Google Scholar

  59. Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2, 659–662 (2009)

    Article CAS Google Scholar

  60. Philibert, A., Loyce, C. & Makowski, D. Quantifying uncertainties in N2O emission due to N fertilizer application in cultivated areas. PLoS ONE 7, e50950 (2012)

    Article CAS Google Scholar

  61. Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014)

    Article CAS Google Scholar

  62. Sawamoto, T., Nakajima, Y., Kasuya, M., Tsuruta, H. & Yagi, K. Evaluation of emission factors for indirect N2O emission due to nitrogen leaching in agro-ecosystems. Geophys. Res. Lett. 32, L03403 (2005)

    Article Google Scholar

  63. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int J. Climatol. 25, 1965–1978 (2005)

    Article Google Scholar

  64. Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008)

    Article Google Scholar

  65. Zomer, R. et al. Trees and Water: Smallholder Agroforestry on Irrigated Lands in Northern India (International Water Management Institute, 2007)

    Google Scholar

  66. Batjes, N. H. ISRIC-WISE Derived Soil Properties on a 5 by 5 Arc-minutes Global Grid V 1.2 52 (ISRIC, 2012)

    Google Scholar

  67. Portmann, F. T., Siebert, S. & Döll, P. MIRCA200 - Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010)

    Article Google Scholar

  68. MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. BioScience 65, 275–289 (2015)

    Article Google Scholar

  69. Licker, R. et al. Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 19, 769–782 (2010)

    Article Google Scholar

  70. Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016)

    Article Google Scholar

Download references

Greenhouse gas emissions intensity of global croplands (2024)
Top Articles
Latest Posts
Article information

Author: Kieth Sipes

Last Updated:

Views: 6276

Rating: 4.7 / 5 (67 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Kieth Sipes

Birthday: 2001-04-14

Address: Suite 492 62479 Champlin Loop, South Catrice, MS 57271

Phone: +9663362133320

Job: District Sales Analyst

Hobby: Digital arts, Dance, Ghost hunting, Worldbuilding, Kayaking, Table tennis, 3D printing

Introduction: My name is Kieth Sipes, I am a zany, rich, courageous, powerful, faithful, jolly, excited person who loves writing and wants to share my knowledge and understanding with you.